Abstract

Robust methods for predicting thermal stabilities of collagen triple helices are critical for understanding natural structure and stability in the collagen family of proteins and also for designing synthetic peptides mimicking these essential proteins. In this work, we determine the relative stability imparted on the collagen triple helix by single amino acids and interactions between amino acid pairs. Using this analysis, we create a comprehensive algorithm, SCEPTTr, for predicting melting temperatures of synthetic triple helices. Critically, our algorithm is compatible with every natural amino acid, can evaluate both homotrimers and heterotrimers, and accounts for all possible helix compositions and registers, including non-canonically staggered helices. We test and optimize our algorithm against 431 published collagen triple helices to demonstrate the quality of our predictive system. Finally, we use this algorithm to successfully guide the design of an ABC heterotrimer possessing high assembly specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.