Abstract

Soil pH, soil organic matter (SOM), dissolved organic carbon (DOC) and total trace metal concentration (M(tot)) control the solubility of metals in the soil. Several regression models have included these soil chemical variables for the prediction of metal solubility and free metal ion (FMI) concentrations in contaminated soils. We hypothesize that models developed on contaminated soils (after optimization of the coefficients) can be used on samples from uncontaminated sites. Soil samples were collected from unpolluted agricultural and forest soils located in Eastern Croatia and extracted with water to determine the concentrations of Cd, Cu, Pb and Zn. We used these data to test the applicability of three regression models on existing conditions under different land uses. The same predictors issued in the three models and the same regression coefficients were utilized in the present study. The results showed a good correlation between the observed and predicted values of metal solubility. However, the models overestimate the total solution concentration (M(sol)) and the concentrations of free metal ions (FMI) in solution, and therefore the same regression coefficients were optimized to fit our own observations. This was found to be very successful. The results showed that pH and DOC played a very important role in controlling metal solubility, while SOM and CEC were somewhat less significant. The impact of total soil concentration of metals (M(tot)) was rather minor. However, we feel that to carry out good predictions of M(sol) and FMI, the M(tot) is needed in such regression models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.