Abstract
Advances in neural computing have shown that a neural learning approach that uses Bayesian inference can essentially eliminate the problem of over fitting, which is common with conventional back-propagation neural networks. In addition, Bayesian neural network can provide the confidence (error) associated with its prediction. This paper presents the application of Bayesian learning to train a multilayer perceptron network to predict the shear resistance of reinforced concrete beams without shear reinforcement. The automatic relevance determination technique was employed to assess the relative importance of the different input variables considered in this study on the shear resistance of reinforced concrete beams. The performance of the Bayesian neural network is examined and discussed along with that of current shear design provisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.