Abstract

Coronavirus 2019 (COVID-19) had major social, medical, and economic impacts globally. The study aims to develop a deep-learning model that can predict the severity of COVID-19 in patients based on CT images of their lungs. COVID-19 causes lung infections, and qRT-PCR is an essential tool used to detect virus infection. However, qRT-PCR is inadequate for detecting the severity of the disease and the extent to which it affects the lung. In this paper, we aim to determine the severity level of COVID-19 by studying lung CT scans of people diagnosed with the virus. We used images from King Abdullah University Hospital in Jordan; we collected our dataset from 875 cases with 2205 CT images. A radiologist classified the images into four levels of severity: normal, mild, moderate, and severe. We used various deep-learning algorithms to predict the severity of lung diseases. The results show that the best deep-learning algorithm used is Resnet101, with an accuracy score of 99.5% and a data loss rate of 0.03%. The proposed model assisted in diagnosing and treating COVID-19 patients and helped improve patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.