Abstract
This paper presents some of the geotechnical studies carried out for the seismic design of the one-span suspension bridge across the Messina Strait, that is to connect Sicily with mainland Italy. These studies included advanced geotechnical characterisation, through in situ and laboratory tests, estimate of site stability involving both liquefaction analysis and submerged slope stability, evaluation of soil-foundation stiffness for spectral analysis of the superstructure, 3D FE static calculations, evaluation of anchor block performance under seismic conditions, and full dynamic analyses of the soil–structure interaction. The paper summarises the main results obtained from the geotechnical characterisation of the foundation soils, reports the approach adopted for evaluating the seismic performance of the anchor blocks through a modified Newmark-type calculation, and presents the study of the soil–structure interaction carried out through a series of two-dimensional, plane strain numerical analyses. In these analyses, in addition to the embedded foundation elements, the models included a simplified structural description of the bridge towers specifically designed to reproduce their first vibrations modes, that were deemed to have the most significant influence on the system’s dynamic response. The illustration is limited to the foundation systems of the bridge located on the Sicily shore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.