Abstract
The fight against social exclusion is at the heart of the Europe 2020 strategy: 120 million people are at risk of suffering this condition in the EU. Risk prediction models are widely used in insurance companies and health services. However, the use of these models to allow an early detection of social exclusion by social workers is not a common practice. This paper describes a data analysis of over 16K cases with over 60 predictors from the Spanish region of Castilla y León. The use of machine learning paradigms such as logistic regression and random forest makes possible a high precision in predicting chronic social exclusion. The paper is complemented with a responsive web available online that allows social workers to calculate the risk of a social exclusion case to become chronic through a smartphone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.