Abstract

The objective of this study is to investigate the associated risk factors of pulmonary infection in individuals diagnosed with chronic kidney disease (CKD). The primary goal is to develop a predictive model that can anticipate the likelihood of pulmonary infection during hospitalization among CKD patients. This retrospective cohort study was conducted at two prominent tertiary teaching hospitals. Three distinct models were formulated employing three different approaches: (1) the statistics-driven model, (2) the clinical knowledge-driven model, and (3) the decision tree model. The simplest and most efficient model was obtained by comparing their predictive power, stability, and practicability. This study involved a total of 971 patients, with 388 individuals comprising the modeling group and 583 individuals comprising the validation group. Three different models, namely Models A, B, and C, were utilized, resulting in the identification of seven, four, and eleven predictors, respectively. Ultimately, a statistical knowledge-driven model was selected, which exhibited a C-statistic of 0.891 (0.855-0.927) and a Brier score of 0.012. Furthermore, the Hosmer-Lemeshow test indicated that the model demonstrated good calibration. Additionally, Model A displayed a satisfactory C-statistic of 0.883 (0.856-0.911) during external validation. The statistical-driven model, known as the A-C2GH2S risk score (which incorporates factors such as albumin, C2 [previous COPD history, blood calcium], random venous blood glucose, H2 [hemoglobin, high-density lipoprotein], and smoking), was utilized to determine the risk score for the incidence rate of lung infection in patients with CKD. The findings revealed a gradual increase in the occurrence of pulmonary infections, ranging from 1.84% for individuals with an A-C2GH2S Risk Score ≤ 6, to 93.96% for those with an A-C2GH2S Risk Score ≥ 18.5. A predictive model comprising seven predictors was developed to forecast pulmonary infection in patients with CKD. This model is characterized by its simplicity, practicality, and it also has good specificity and sensitivity after verification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.