Abstract
Landing gear is an essential part of an aircraft. However, the components of landing gear are susceptible to degradation over the life of their operation, which can result in the shimmy effect occurring during take-off and landing. In order to reduce unplanned flight disruptions and increase the availability of aircraft, the predictive maintenance (PdM) technique is investigated in this study. This paper presents a case study on the implementation of a health assessment and prediction workflow for remaining useful life (RUL) based on the prognostics and health management (PHM) framework of currently in-service aircraft, which could significantly benefit fleet operators and aircraft maintenance. Machine learning is utilized to develop a health indicator (HI) for landing gear using a data-driven approach, whereas a time-series analysis (TSA) is used to predict its degradation. The degradation models are evaluated using large volumes of real sensor data from in-service aircraft. Finally, the challenges of implementing a built-in PHM system for next-generation aircraft are outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.