Abstract
We describe an approach to predict failure in a complex, additively-manufactured stainless steel part as defined by the third Sandia Fracture Challenge. A viscoplastic internal state variable constitutive model was calibrated to fit experimental tension curves in order to capture plasticity, necking, and damage evolution leading to failure. Defects such as gas porosity and lack of fusion voids were represented by overlaying a synthetic porosity distribution onto the finite element mesh and computing the elementwise ratio between pore volume and element volume to initialize the damage internal state variables. These void volume fraction values were then used in a damage formulation accounting for growth of these existing voids, while new voids were allowed to nucleate based on a nucleation rule. Blind predictions of failure are compared to experimental results. The comparisons indicate that crack initiation and propagation were correctly predicted, and that an initial porosity field superimposed as higher initial damage may provide a path forward for capturing material strength uncertainty. The latter conclusion was supported by predicted crack face tortuosity beyond the usual mesh sensitivity and variability in predicted strain to failure; however, it bears further inquiry and a more conclusive result is pending compressive testing of challenge-built coupons to de-convolute materials behavior from the geometric influence of significant porosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.