Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread in the environment, as a result of decades of use across a range of applications. While PFAS contamination often enters the environment in the aqueous phase, PFAS is regularly detected in a range of different phases, including soils, sediments and biota. Although PFAS at a given site may originate from the same sources, the compositions observed in different phases are nearly always different, a fact that can complicate source allocation efforts. This paper presents a quantitative method for prediction of the relative composition of PFAS in different phases for components for which differences in behavior are primarily driven by hydrophobicity. The derived equations suggest that under these conditions, the relative compositions in different phases in contact with water should be independent of overall affinity for the phase, and as such should be the same for all non-water phases. This result is illustrated with data from individual samples, as well as from site-wide evaluations for a range of different phases. The results of the work provide a useful tool to reconcile PFAS composition differences in different phases, and provide a baseline for recognizing cases where hydrophobicity is not the primary driver of differences in distribution between phases. Furthermore, the results may be useful in forensic applications for classification of PFAS across different phases. The use of the resulting equations to transform water data to train a supervised learning algorithm for forensic analysis of PFAS in non-water phases is illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.