Abstract

The ultraviolet (UV) absorption peaks of NaCl, NaOH, and $\beta $β-phenylethylamine (PEA) in an aqueous solution move toward redshift. We proposed the peak area method for the quantitative analysis of PEA, NaCl, and NaOH. First, we obtained the predictable regularities of the redshift of the single component sample. Then, we obtained the regularities of the redshift of the UV spectrum for the mixture by the peak height and peak area methods. Finally, the BP-ANN algorithm was applied to determine the concentration of the mixture using the peak height and peak area method. The results of the testing set showed that correlation coefficients (${{\rm R}^2}$R2) of 0.992, 0.993, and 0.992 were obtained by peak height method and 0.997, 0.998, and 0.998 were obtained by peak area method for NaCl, NaOH, and PEA, respectively. Meanwhile, the relative errors of the prediction of NaCl, NaOH, and PEA obtained by peak area method were less than 3%, whereas the REP of NaCl, NaOH, and PEA obtained by peak height method were more than 5%. Compared with the results of the peak height method, the results showed that the peak area was more accurate than the peak height in predicting the redshift of the UV spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call