Abstract

Recurrence of common bile duct stones (CBDs) commonly happens after endoscopic retrograde cholangiopancreatography (ERCP). The clinical prediction models for the recurrence of CBDs after ERCP are lacking. We aim to develop high-performance prediction models for the recurrence of CBDS after ERCP treatment using automated machine learning (AutoML) and to assess the AutoML models versus the traditional regression models. 473 patients with CBDs undergoing ERCP were recruited in the single-center retrospective cohort study. Samples were divided into Training Set (65%) and Validation Set (35%) randomly. Three modeling approaches, including fully automated machine learning (Fully automated), semi-automated machine learning (Semi-automated), and traditional regression were applied to fit prediction models. Models' discrimination, calibration, and clinical benefits were examined. The Shapley additive explanations (SHAP), partial dependence plot (PDP), and SHAP local explanation (SHAPLE) were proposed for the interpretation of the best model. The area under roc curve (AUROC) of semi-automated gradient boost machine (GBM) model was 0.749 in Validation Set, better than the other fully/semi-automated models and the traditional regression models (highest AUROC = 0.736). The calibration and clinical application of AutoML models were adequate. Through the SHAP-PDP-SHAPLE pipeline, the roles of key variables of the semi-automated GBM model were visualized. Lastly, the best model was deployed online for clinical practitioners. The GBM model based on semi-AutoML is an optimal model to predict the recurrence of CBDs after ERCP treatment. In comparison with traditional regressions, AutoML algorithms present significant strengths in modeling, which show promise in future clinical practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.