Abstract

Because of the increasing ease of video capture, many millions of consumers create and upload large volumes of User-Generated-Content (UGC) videos to social and streaming media sites over the Internet. UGC videos are commonly captured by naive users having limited skills and imperfect techniques, and tend to be afflicted by mixtures of highly diverse in-capture distortions. These UGC videos are then often uploaded for sharing onto cloud servers, where they are further compressed for storage and transmission. Our paper tackles the highly practical problem of predicting the quality of compressed videos (perhaps during the process of compression, to help guide it), with only (possibly severely) distorted UGC videos as references. To address this problem, we have developed a novel Video Quality Assessment (VQA) framework that we call 1stepVQA (to distinguish it from two-step methods that we discuss). 1stepVQA overcomes limitations of Full-Reference, Reduced-Reference and No-Reference VQA models by exploiting the statistical regularities of both natural videos and distorted videos. We also describe a new dedicated video database, which was created by applying a realistic VMAF-Guided perceptual rate distortion optimization (RDO) criterion to create realistically compressed versions of UGC source videos, which typically have pre-existing distortions. We show that 1stepVQA is able to more accurately predict the quality of compressed videos, given imperfect reference videos, and outperforms other VQA models in this scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call