Abstract

ObjectiveThis study delves into the impact of urban meteorological elements—specifically, air temperature, relative humidity, and atmospheric pressure—on water consumption in Kamyaran city. Data on urban water consumption, temperature (in Celsius), air pressure (in hectopascals), and relative humidity (in percent) were used for the statistical period 2017–2023. Various models, including the correlation coefficient, generalized additive models (GAM), generalized linear models (GLM), and support vector machines (SVM), were employed to scrutinize the data.ResultsWater consumption increases due to the influence of relative humidity and air pressure when the temperature variable is controlled. Under specific air temperature conditions, elevated air pressure coupled with high relative humidity intensifies the response of water consumption to variations in these elements. Water consumption exhibits heightened sensitivity to high relative humidity and air pressure compared to low levels of these factors. During winter, when a western low-pressure air mass arrives and disrupts normal conditions, causing a decrease in pressure and temperature, urban water consumption also diminishes. The output from the models employed in this study holds significance for enhancing the prediction and management of water resource consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.