Abstract

Transition metal oxide materials are of great utility, with a diversity of topical applications ranging from catalysis to electronic devices. Because of their widespread importance in materials science, there is increasing interest in developing computational tools capable of reliable prediction of transition metal oxide phase behavior and properties. The workhorse of materials theory is density functional theory (DFT). Accordingly, we have investigated the impact of various correlation and exchange approximations on their ability to predict the properties of NiO using DFT. We have chosen NiO as a particularly challenging representative of transition metal oxides in general. In so doing, we have provided validation for the use of the r2SCAN density functional for predicting the materials properties of oxides. r2SCAN yields accurate structural properties of NiO and a local spin moment that notably persists under pressure, consistent with experiment. The outcome of our study is a pragmatic scheme for providing electronic structure data to enable the parameterization of interatomic potentials using state-of-the-art artificial intelligence (AI) and machine learning (ML) methodologies. The latter is essential to allow large scale molecular dynamics simulations of bulk and surface materials phase behavior and properties with ab initio accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.