Abstract
Rationale and ObjectivesTo assess the feasibility and efficacy of a deep learning based three-dimensional (3D) super-resolution diffusion-weighted imaging (DWI) radiomics model in predicting the prognosis of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids. MethodsThis retrospective study included 360 patients with uterine fibroids who received HIFU treatment, including Center A (training set: N=240; internal testing set: N=60) and Center B (external testing set: N=60) and were classified as having a favorable or unfavorable prognosis based on the postoperative non-perfusion volume ratio. A deep transfer learning approach was used to construct super-resolution DWI (SR-DWI) based on conventional high-resolution DWI (HR-DWI), and 1198 radiomics features were extracted from manually segmented regions of interest in both image types. Following data preprocessing and feature selection, radiomics models were constructed for HR-DWI and SR-DWI using Support Vector Machine (SVM), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM) algorithms, with performance evaluated using area under the curve (AUC) and decision curves. ResultAll DWI radiomics models demonstrated superior AUC in predicting HIFU ablated uterine fibroids prognosis compared to expert radiologists (AUC: 0.706, 95% CI: 0.647-0.748). When utilizing different machine learning algorithms, the HR-DWI model achieved AUC values of 0.805 (95% CI: 0.679-0.931) with SVM, 0.797 (95% CI: 0.672-0.921) with RF, and 0.770 (95% CI: 0.631-0.908) with LightGBM. Meanwhile, the SR-DWI model outperformed the HR-DWI model (P<0.05) across all algorithms, with AUC values of 0.868 (95% CI: 0.775-0.960) with SVM, 0.824 (95% CI: 0.715-0.934) with RF, and 0.821 (95% CI: 0.709-0.933) with LightGBM. And decision curve analysis further confirmed the good clinical value of the models. ConclusionDeep learning based 3D SR-DWI radiomics model demonstrated favorable feasibility and effectiveness in predicting the prognosis of HIFU ablated uterine fibroids, which was superior to HR-DWI model and assessment by expert radiologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.