Abstract

Background: Multi-nucleon transfer reactions have recently attracted attention as a possible path to the synthesis of new neutron-rich heavy nuclei. Purpose: We study transfer reactions involving massive nuclei with the intention of understanding if the semi-classical model GRAZING coupled to an evaporation and fission competition model can satisfactory reproduce experimental data on transfer reactions in which fission plays a role. Methods: We have taken the computer code GRAZING and have added fission competition to it (GRAZING-F) using our current understanding of $\Gamma_n/\Gamma_f$, fission barriers and level densities. Results: The code GRAZING-F seems to satisfactory reproduce experimental data for $+1p$, $+2p$ and $+3p$ transfers, but has limitations in reproducing measurements of larger above-target and below-target transfers. Nonetheless, we use GRAZING-F to estimate production rates of neutron-rich $N=126$ nuclei, actinides and transactinides. Conclusions: The GRAZING code, with appropriate modifications to account for fission decay as well as neutron emission by excited primary fragments, does not predict large cross sections for multi-nucleon transfer reactions leading to neutron-rich transactinide nuclei, but predicts opportunities to produce new neutron-rich actinide isotopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call