Abstract

The problem of tweet popularity prediction, or forecasting the total number of retweets stemming from an ancestral tweet, has attracted considerable interest recently. The prediction can be accomplished by fitting a point process model to the sequence of retweet times up to a certain censoring time and project the fitted model to a future time point. However, models employing such approach tend to have inferior prediction accuracy when the censoring time is too short before sufficient information can accumulate. To overcome this, we propose an empirical Bayes type approach of parameter estimation to combine internal knowledge on the times of historical retweets up to the censoring time and external knowledge on complete retweet sequences in the training data. We demonstrate the approach using several point process models with finite-dimensional parameters, where the prior distribution for the parameter of each model is constructed based on the external knowledge, and the likelihood is calculated based on the internal knowledge. The mode of the posterior distribution is used as the estimator of the finite-dimensional parameter, and the mean of the predictive distribution for the number of retweets implied by each of the estimated models is used to predict the tweet popularity. Using a large Twitter data set, we reveal that the proposed methodology not only enables prediction at time zero before the arrival of any retweet event, but also substantially improves the prediction performances of existing models, especially at earlier censoring times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.