Abstract
In this study, public opinion and emotions regarding different stages of the Covid-19 pandemic from the outbreak of the disease to the distribution of vaccines were analyzed to predict the popularity of tweets. More than 1.25 million English tweets were collected, posted from January 20, 2020, to May 29, 2021. Five sets of content features, including topic analysis, topics plus TF-IDF vectorizer, bag of words (BOW) by TF-IDF vectorizer, document embedding, and document embedding plus TF-IDF vectorizer, were extracted and applied to supervised machine learning algorithms to generate a predictive model for the retweetability of posted tweets. The analysis showed that tweets with higher emotional intensity are more popular than tweets containing information on Covid-19 pandemic. This study can help to detect the public emotions during the pandemic and after vaccination and predict the retweetability of posted tweets in different stages of Covid-19 pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Management Data Insights
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.