Abstract

The Straits of Mackinac are a unique feature that connects Lake Michigan and Lake Huron into a single hydraulically linked system. With currents of up to 1m/s and oscillating volumetric transport up to 80,000m3/s, they play an important role in water quality, contaminant transport, navigation, and ecological processes. We present the first three-dimensional hydrodynamic model of the combined Lake Michigan–Huron, including the Straits of Mackinac at high-resolution, that is able to simulate the three dimensional structure of the oscillating flows at the Straits. In comparison with individual lake models for Michigan and Huron (no connection at the Straits), we are able to isolate the effects of the bi-lake oscillation and have found that although the oscillation (Helmholtz mode) is the dominant forcing mechanism, the flow can be modulated when atmospheric systems are in-phase with water level fluctuations. Furthermore, the area of influence of the Straits is found to extend up to 70km into each lake, underscoring the need for realistic predictions within the Straits. For the first time, this combined-lake hydrodynamic model provides the capability to investigate and accurately predict flow at the Straits of Mackinac and its effect on Lake Michigan and Huron. This model forms the basis for the next generation of real-time hydrodynamic models being developed for the Great Lakes Coastal Forecasting System, a suite of models designed by the National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory (NOAA/GLERL) that predict hydrodynamic conditions such as currents, temperatures, and water levels in three dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call