Abstract

Gadolinium doped ceria (GDC) is a promising alternative electrolyte material for solid oxide fuel cells that offers the possibility of operation in the intermediate temperature range (773–1073 K). To determine the optimal dopant concentration in GDC, we have employed a systematic approach of applying a 3D kinetic lattice Monte Carlo (KLMC) model of vacancy diffusion in conjunction with previously calculated activation energies for vacancy migration in GDC as inputs. KLMC simulations were performed including the vacancy repelling effects in GDC. Increasing the dopant concentration increases the vacancy concentration, which increases the ionic conductivity. However, at higher concentrations, vacancy–vacancy repulsion impedes vacancy diffusion, and together with vacancy trapping by dopants decreases the ionic conductivity. The maximum ionic conductivity is predicted to occur at ≈20% to 25% mole fraction of Gd dopant. Placing Gd dopants in pairs, instead of randomly, was found to decrease the conductivity by ≈50%. Overall, the trends in ionic conductivity results obtained using the KLMC model developed in this work are in reasonable agreement with the available experimental data. This KLMC model can be applied to a variety of ceria-based electrolyte materials for predicting the optimum dopant concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.