Abstract
Blood transfusion is a common practice in cardiac surgery, despite its well-known negative effects. To mitigate blood transfusion-associated risks, identifying patients who are at higher risk of needing this procedure is crucial. Widely used risk scores to predict the need for blood transfusions have yielded unsatisfactory results when validated for the Brazilian population. In this retrospective study, machine learning (ML) algorithms were compared to predict the need for blood transfusions in a cohort of 495 cardiac surgery patients treated at a Brazilian reference service between 2019 and 2021. The performance of the models was evaluated using various metrics, including the area under the curve (AUC), and compared to the commonly used Transfusion Risk and Clinical Knowledge (TRACK) and Transfusion Risk Understanding Scoring Tool (TRUST) scoring systems. The study found that the model had the highest performance, achieving an AUC of 0.7350 (confidence interval [CI]: 0.7203 to 0.7497). Importantly, all ML algorithms performed significantly better than the commonly used TRACK and TRUST scoring systems. TRACK had an AUC of 0.6757 (CI: 0.6609 to 0.6906), while TRUST had an AUC of 0.6622 (CI: 0.6473 to 0.6906). The findings of this study suggest that ML algorithms may offer a more accurate prediction of the need for blood transfusions than the traditional scoring systems and could enhance the accuracy of predicting blood transfusion requirements in cardiac surgery patients. Further research could focus on optimizing and refining ML algorithms to improve their accuracy and make them more suitable for clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.