Abstract

We investigated whether it was possible to predict the prognosis of fetuses with cystic hygroma in early pregnancy based on the degree of neck thickening. We retrospectively analyzed 57 singleton pregnancies with fetuses with cystic hygroma who were examined before the 22nd week of pregnancy. The fetuses were categorized according to the outcome, structural abnormalities at birth, and chromosomal abnormalities. Here, we proposed a new sonographic predictor with which we assessed neck thickening by dividing the width of the neck thickening by the biparietal diameter, which is expressed as the cystic hygroma width/biparietal diameter ratio. The median cystic hygroma width/biparietal diameter ratio in the intrauterine fetal death group (0.51) was significantly higher than that in the live birth group (0.27). No significant difference in the median cystic hygroma width/biparietal diameter ratio was found between the structural abnormalities group at birth and the no structural abnormalities group, and no significant difference in the median cystic hygroma width/biparietal diameter ratio was found between the chromosomal abnormality group and the no chromosomal abnormality group. We used receiver operating characteristic analysis to evaluate the cystic hygroma width/biparietal diameter ratio to predict intrauterine fetal death. When the cystic hygroma width/biparietal diameter ratio cut-off value was 0.5, intrauterine fetal death could be predicted with a sensitivity of 52.9% and a specificity of 100%. It is possible to predict intrauterine fetal death in fetuses with cystic hygroma in early pregnancy if cystic hygroma width/biparietal diameter ratio is measured. However, even if cystic hygroma width/biparietal diameter ratio is measured, predicting the presence or absence of a structural abnormality at birth or a chromosomal abnormality is difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.