Abstract

A three-dimensional model that predicts the interface morphologies of silicon thin-film solar cells prepared on randomly textured substrates was developed and compared to experimental data. The surface morphologies of silicon solar cells were calculated by using atomic force microscope scans of the textured substrates and the film thickness as input data. Calculated surface morphologies of silicon solar cells are in good agreement with experimentally measured morphologies. A detailed description of the solar cell interface morphologies is necessary to understand light-trapping in silicon single junction and micromorph tandem thin-film solar cells and derive optimal light-trapping structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call