Abstract

In large scale fermentors the cultivated cells are exposed to dynamic changes in the nutrient concentrations due to imperfect mixing. Based on the characterization of these nutrient gradients in space and time, a rational scale down design can be obtained. This study focuses on the combined gradients of dissolved sugar and oxygen concentrations. Based on a recent computational fluid dynamics (CFD) study, firstly a scale-down design was developed. From intracellular metabolite measurements during these scale-down experiments, the metabolic behavior of the cells under highly dynamic conditions was revealed. Under the combined influence of oscillating glucose and oxygen concentrations, the penicillin production declined to 50 % of the value under steady state conditions. This decline was similar as observed during glucose oscillations alone. The influence of oxygen oscillations on the levels of the majority of the intracellular metabolites analyzed was negligible, although these metabolites were strongly affected by the varying oxygen levels under solely oxygen oscillations. Additionally, a metabolic structured kinetic model was developed and validated with data from glucose and oxygen oscillation experiments. This model can be coupled to CFD simulations to obtain an accurate prediction of the performance of industrial strains in space and time in large industrial scale bioreactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call