Abstract

Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).

Highlights

  • The last 100 years have seen significant changes in the global climate that are very likely to be attributed to anthropogenic greenhouse gas emissions [1]

  • Sea Surface Temperature (SST) and Sea Bottom Temperature (SBT) trends in the North Sea were averaged over all cells at a 0.5u latitude60.5u longitude resolution. doi:10.1371/journal.pone.0054216.g002

  • From 1985 to 2050, the predicted centroid distribution shift for L. circularis ranges from 8.9 km to 450 km northwards while that for R. undulata ranges from 32 km southwards to 247 km northwards

Read more

Summary

Introduction

The last 100 years have seen significant changes in the global climate that are very likely to be attributed to anthropogenic greenhouse gas emissions [1]. Climate change has been observed to be having a profound effect on both marine and terrestrial biodiversity [3,4,5], and this trend is expected to continue, with associated changes in species compositions [6], distributions [4] and phenological patterns [7]. Concern over the impact of climate change in the marine environment is increasing, with longer-term shifts in mean environmental conditions and climatic variability moving outside the bounds within which adaptations in marine communities have previously been associated [8]. The changes in abundances and distributions that result from these ocean-atmospheric changes may severely impact the biological and environmental functioning of ecosystems or food webs [9], the goods and services derived from them and conservation and resource management [10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call