Abstract
We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns’ conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.