Abstract

The core-shell assembly motif is ubiquitous in chemistry. While the most obvious examples are core/shell-type nanoparticles, many other examples exist. The shape of the core/shell constructs is poorly understood, making it impossible to separate chemical effects from geometric effects. Here, we create a model for the core/shell construct and develop proof for how the eccentricity is expected to change as a function of the shell. We find that the addition of a constant thickness shell always creates a relatively more spherical shape for all shapes covered by our model unless the shape is already spherical or has some underlying radial symmetry. We apply this work to simulated AOT reverse micelles and demonstrate that it is remarkably successful at explaining the observed shapes of the chemical systems. We identify the three specific cases where the model breaks down and how this impacts eccentricity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.