Abstract

AbstractWe review the classic clinical versus statistical prediction debate as well as related modern work on humans versus. algorithms. Despite the successes of statistical prediction over clinical prediction, there is still widespread resistance to algorithms. We discuss recent attempts to understand that resistance. Current research focuses on when people use algorithmic predictions, how people perceive algorithms, and how algorithms can be made more appealing. We also examine attempts to boost human forecasting accuracy, either by spotting talent, cultivating talent via training, or developing algorithms that aggregate individual forecasts. We hypothesize that hybrid models with both human and algorithmic predictions may encounter less resistance than algorithms alone, especially when the algorithm is “humanized” (with anthropomorphic features) and the human is “algorithmized” (by reducing noise, decreasing bias and increasing signal).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.