Abstract
Oscillations observed in the light curve of Nova V1974 Cygni 1992 since summer 1994 have been interpreted as permanent superhumps. From simple calculations based on the Tidal-Disk Instability model of Osaki, and assuming that the accretion disc is the dominant optical source in the binary system, we predict that the nova will evolve to become an SU UMa system as its brightness declines from its present luminosity by another 2-3 magnitudes. Linear extrapolation of its current rate of fading (in magnitude units) puts the time of this phase transition within the next 2-4 years. Alternatively, the brightness decline will stop before the nova reaches that level, and the system will continue to show permanent superhumps in its light curve. It will then be similar to two other old novae, V603 Aql and CP Pup, that still display the permanent superhumps phenomenon 79 and 55 years, respectively, after their eruptions. We suggest that non-magnetic novae with short orbital periods could be progenitors of permanent superhump systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.