Abstract

Abstract The thermal efficiency of a rotary kiln is predominantly influenced by the amount of lateral mixing of the material bed. In this paper, the fraction of the mixing zone in the material bed is predicted for the rolling motion. For a given material, the fraction is found to depend only on three dimensionless variables—the ratio of the particle diameter to the kiln diameter, the Froude number and the filling degree. Experiments were carried out on a rotating cylinder with beans as testing material. The predicted results are in good agreement with the measurements with a maximal error of 12%. The fraction of the mixing zone is then analyzed for industrial rotary kilns. Its value is found to increase approximately linearly with increasing Froude number and the dynamic angle of repose of the material. For all investigated cases, the fraction of the mixing zone lies in the range of 20–45%. Results of this study can provide orientating values of the mixing zone fraction, which are needed to calculate the thermal efficiency of the rotary kiln.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.