Abstract

ObjectiveMixed-pattern hemorrhages (MPH) commonly occur in ruptured middle cerebral artery (MCA) aneurysms and are associated with poor clinical outcomes. This study aimed to predict the formation of MPH in a multicenter database of MCA aneurysms using a decision tree model. MethodsWe retrospectively reviewed patients with ruptured MCA aneurysms between January 2009 and June 2020. The MPH was defined as subarachnoid hemorrhages with intracranial hematomas and/or intraventricular hemorrhages and/or subdural hematomas. Univariate and multivariate logistic regression analyses were used to explore the prediction factors of the formation of MPH. Based on these prediction factors, a decision tree model was developed to predict the formation of MPH. Additional independent datasets were used for external validation. ResultsWe enrolled 436 patients with ruptured MCA aneurysms detected by computed tomography angiography; 285 patients had MPH (65.4%). A multivariate logistic regression analysis showed that age, aneurysm size, multiple aneurysms, and the presence of a daughter dome were the independent prediction factors of the formation of MPH. The areas under receiver operating characteristic curves of the decision tree model in the training, internal, and external validation cohorts were 0.951, 0.927, and 0.901, respectively. ConclusionAge, aneurysm size, the presence of a daughter dome, and multiple aneurysms were the independent prediction factors of the formation of MPH. The decision tree model is a useful visual triage tool to predict the formation of MPH that could facilitate the management of unruptured aneurysms in routine clinical work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call