Abstract

A semi-analytical model is presented, based on conventional principles of mechanics, to predict the flexure behaviour of steel fibre reinforced concrete. The model uses a stress-block approach to represent the stresses that develop at a cracked section by three discrete stress zones: (a) a compressive zone; (b) an uncracked tensile zone; and (c) a cracked tensile zone. It is further shown that the stress-block, and hence flexural behaviour, is a function of five principal parameters: compressive stress–strain relation; tensile stress–strain relation; fibre pull-out behaviour; the number and distribution of fibres across the cracked section in terms of their positions, orientations and embedment lengths; and the strain/crack-width profile in relation to the deflection of the beam. An experimental investigation was undertaken on both cast and sprayed specimens to obtain relationships for use in the model. The results of the study showed a reasonable agreement between the model predictions and experimental results. However, the accuracy of the model is probably unacceptable for it to be currently used in design. A subsequent analysis highlighted the single fibre pull-out test and the sensitivity of the strain analysis tests as being the main cause of the discrepancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.