Abstract

The Coronavirus disease 2019 (COVID-19) is a respiratory illness that can spread from person to person. Since the COVID-19 pandemic is spreading rapidly over the world and its outbreak has affected different people in different ways, it is significant to study or predict the evolution of its epidemic trend. However, most of the studies focused solely on either classical epidemiological models or machine learning models for COVID-19 pandemic forecasting, which either suffer from the limitation of the generalization ability and scalability or the lack of surveillance data. In this work, we propose T-SIRGAN that integrates the strengths of the epidemiological theories and deep learning models to be able to represent complex epidemic processes and model the non-linear relationship for more accurate prediction of the growth of COVID-19. T-SIRGAN first adopts the Susceptible-Infectious-Recovered (SIR) model to generate epidemiological-based simulation data, which are then fed into a generative adversarial network (GAN) as adversarial examples for data augmentation. Then, Transformers are used to predict the future trends of COVID-19 based on the generated synthetic data. Extensive experiments on real-world datasets demonstrate the superiority of our method. We also discuss the effectiveness of vaccine based on the difference between the predicted and the reported number of COVID-19 cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call