Abstract

Two-dimensional (2D) diamond-like (Diam) carbon (C) and cubic boron nitride (cBN) with different interface atoms named as BCB, BCN and NCN are investigated by first principal studies. The calculations reveal that the CB bond may be the most energetically favored bonding configuration in the Diam/cBN epitaxy. The electronic properties can be tuned not only by different interfacial atoms, but also by varying the number of intermediate C-layers. The application of negative stress transforms the 2D Diam/cBN intercalated structures from a semiconductor to a metal. The Young's and shear module indicate prominent mechanical properties for these intercalated structures, in particular for BCN that can be compared to bulk. The predicted 2D Diam/cBN intercalated structures presented here show that the stacking order, the number of intermediate C-layers, and the use of strain-induced structures can open new avenues for the application of novel ultra-thin and ultra-tough electronic reserve material devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.