Abstract

To predict the efficacy of high-intensity focused ultrasound (HIFU) ablation for uterine leiomyomas based on diffusion tensor imaging (DTI) indicators and imaging features. Sixty-two patients with 85 uterine leiomyomas were consecutively enrolled in this retrospective study and underwent DTI scanning before HIFU treatment. Based on whether the non-perfused volume ratio (NPVR) was greater than 70%, all patients were assigned to sufficient ablation (NPVR ≥ 70%) or insufficient ablation (NPVR < 70%) groups. The selected DTI indicators and imaging features were incorporated to construct a combined model. The predictive performance of DTI indicators and the combined model were assessed using receiver operating characteristic (ROC) curves. There were 42 leiomyomas in the sufficient ablation group (NPVR ≥ 70%) and 43 leiomyomas in the insufficient ablation group (NPVR < 70%). The fractional anisotropy (FA) and relative anisotropy (RA) values were higher in the sufficient ablation group than in the insufficient ablation group (p < 0.05). Conversely, the volume ratio (VR) and mean diffusivity (MD) values were lower in the sufficient ablation group than those in the insufficient ablation group (p < 0.05). Notably, the combined model composed of the RA and enhancement degree values had high predictive efficiency, with an AUC of 0.915. The combined model demonstrated higher predictive performance than FA and MD alone (p = 0.032 and p < 0.001, respectively) but showed no significant improvement compared with RA and VR (p > 0.05). DTI indicators, especially the combined model incorporating DTI indicators and imaging features, can be a promising imaging tool to assist clinicians in predicting HIFU efficacy for uterine leiomyomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.