Abstract

This paper proposes an experimental methodology to characterize complex parts presenting various gradients using aeronautical induction surface hardened spur gears. A 3D fatigue model taking into account residual stresses, microstructure variations, and surface roughness is then proposed for the prediction of the bending endurance limit. The model is based on the well-known Crossland criterion; calibrated with representative axial and torsion laboratory specimens. The results are compared with testing performed on a custom-made single tooth bending fatigue (STBF) rig. Fracture surface analysis using electronic microscopy is used to investigate the crack initiation sites. It is shown that residual stresses can have a significant impact on bending fatigue and that two induction treatments can present very different fatigue resistance even if the shape and depth of the hardened layer is identical in the root. The proposed methodology could be adapted to other geometries and surface treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.