Abstract

Reliable full-scale prediction of drag due to rough wall-bounded turbulent fluid flow remains a challenge. Currently, the uncertainty is at least 10%, with consequences, for example, on energy and transport applications exceeding billions of dollars per year. The crux of the difficulty is the large number of relevant roughness topographies and the high cost of testing each topography, but computational and experimental advances in the last decade or so have been lowering these barriers. In light of these advances, here we review the underpinnings and limits of relationships between roughness topography and drag behavior, focusing on canonical and fully turbulent incompressible flow over rigid roughness. These advances are beginning to spill over into multiphysical areas of roughness, such as heat transfer, and promise broad increases in predictive reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.