Abstract

The inaccessibility of open ocean habitat and the cryptic nature of small animals are fundamental problems when assessing the distribution of oceanic-stage sea turtles and other marine animals sharing similar life-history traits. Most methods that estimate patterns of abundance cannot be applied in situations that are extremely data limited. Here, we use a movement ecology framework to generate the first predicted distributions for the oceanic stage of the Kemp's ridley sea turtle (Lepidochelys kempii). Our simulations of particle dispersal within ocean circulation models reveal substantial annual variation in distribution and survival among simulated cohorts. Such techniques can help prioritize areas for conservation, and supply inputs for more realistic demographic models attempting to characterize population trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call