Abstract
This study investigates delamination damage mechanisms during the double cantilever beam standard test using the strain energy release rate. The acoustic emission parameter is used to replace the original calculation method of measuring crack length to predict delamination. For this purpose, 24-layer glass/epoxy multidirectional specimens with different layups, and interface orientations of 0°, 30°, 45°, and 60°, were fabricated based on ASTM D5528 (2013). Acoustic emission testing (AE) is used to detect the damage mechanism of composite multidirectional laminates (combined with microscopic real-time observation), and it is verified that the strain energy release rate can be used as a criterion for predicting delamination damage in composite materials. By comparing the AE results with the delamination expansion images observed by microvisualization in real time, it is found that the acoustic emission parameters can predict the damage of laminates earlier. Based on the data inversion of the acoustic emission parameters of the strain energy release rate, it is found that the strain energy release rate of the specimens with different fiber interface orientations is consistent with the original calculated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.