Abstract

Providing reliable electricity from small-scale renewable power is an important challenge for emerging economies. The soluble lead flow battery (SLFB) is a promising battery for this application, as it has a simple architecture making it relatively robust, and a lifetime of 2000 cycles demonstrated at the cell level. Also, the electrolyte is manufacturable directly from spent lead acid batteries. There is a need for techno-economic models to allow the cost/performance of a complete system to be defined and optimised.Such a model is defined here for the first time and used in a multi-objective optimisation to design a 24 V system for a charging hub in Sierra Leone. A 4 h duration was found to be optimal, and electrolyte for a 3.5 kW/14 kWh system would fit in a 1000 L IBC.Methanesulfonic acid was found to be the largest cost component of the 4 h system, with graphitic bipolar plates next. Both have low raw material costs, and in an optimistic scenario a total component cost of <£50/kWh would be achieved, half that of current NMC Li-ion cells. The greatest technical risk to achieving low cost is deposit thickness of lead dioxide. This important research gap should be addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.