Abstract
Polymorphism is a well-known property of molecular crystals, which allows the same molecule to form solids with several crystalline structures that can differ significantly in physical properties. Polymorphs that possess different optical absorption properties in the visible range may exhibit different perceived colors, a phenomenon known as color polymorphism. One striking example of color polymorphism is given by 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, known as ROY for its red-orange-yellow colors. First-principles prediction of color polymorphism may help in polymorph assignment and design but has proven to be challenging. Here, we predict the absorption spectra and simulate the colors of 12 ROY polymorphs using the general, nonempirical method of time-dependent (TD) optimally tuned screened range-separated hybrid (OT-SRSH) functional. For 5 ROY polymorphs with known experimental absorption spectra, we show that the TD-OT-SRSH approach predicts absorption spectra in quantitative agreement with experiment. For all polymorphs, we show that an accurate simulation of the colors is obtained, paving the way to a fully predictive, low-cost calculation of color polymorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.