Abstract
Deformation-induced α′′ martensite formation is essential to the mechanical properties of a variety of metastable β Ti alloys by extending elasticity or contributing to work-hardening during plastic deformation. Nevertheless, to date, a comprehensive analysis of the effect of β texture and applied stress state on the martensitic transformation to α′′ is still lacking. The present study therefore provides a detailed analysis of the work which is made available from the shape strain of the martensitic transformation under a variety of in-plane stress states and as a function of β crystal orientation. The available work was found to strongly depend on the applied stress state and the parent grain orientation. The shape strain of the martensitic transformation was obtained from applying the phenomenological theory of martensite crystallography. In cases where this theory was not applicable, an approximation of the shape strain by the Bain strain was found to provide a good approximation of the available work. Analysis of three different metastable β Ti alloys showed no strong effect of the alloy composition on the available work. Martensite formation from typical cold- and warm-rolling β texture components under different stress states is discussed. Cases are highlighted to show how the cold- and warm-rolling β textures can be tailored to hinder martensite formation upon subsequent industrial forming operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.