Abstract
A quantitative structure–property relationship (QSPR) study is suggested for the prediction of auto-ignition temperatures (AIT) of organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structures of compounds, such as topological, charge, and geometric descriptors. The variable selection method of genetic algorithm (GA) was employed to select optimal subset of descriptors that have significant contribution to the overall AIT property from the large pool of calculated descriptors. The novel modeling method of support vector machine (SVM) was then employed to model the possible quantitative relationship existed between these selected descriptors and AIT property. The resulted model showed high prediction ability with the average absolute error being 28.88 °C, and the root mean square error being 36.86 for the prediction set, which are within the range of the experimental error of AIT measurements. The proposed method can be successfully used to predict the auto-ignition temperatures of organic compounds with only nine pre-selected theoretical descriptors which can be calculated directly from molecular structure alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.