Abstract

This research paper deals with using supervised machine learning algorithms to detect authenticity of bank notes. In this research we were successful in achieving very high accuracy (of the order of 99%) by applying some data preprocessing tricks and then running the processed data on supervised learning algorithms like SVM, Decision Trees, Logistic Regression, KNN. We then proceed to analyze the misclassified points. We examine the confusion matrix to find out which algorithms had more number of false positives and which algorithm had more number of False negatives. This research paper deals with using supervised machine learning algorithms to detect authenticity of bank notes. In this research we were successful in achieving very high accuracy (of the order of 99%) by applying some data preprocessing tricks and then running the processed data on supervised learning algorithms like SVM, Decision Trees, Logistic Regression, KNN. We then proceed to analyze the misclassified points. We examine the confusion matrix to find out which algorithms had more number of false positives and which algorithm had more number of False negatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.