Abstract

The manner in which increases in leaf surface area S scale with respect to increases in leaf dry mass M(t) within and across species has important implications to understanding the ability of plants to harvest sunlight, grow, and ultimately reproduce. Thus far, no mechanistic explanation has been advanced to explain why prior work shows that the scaling exponent governing the S to M(t) relationship is generally significantly less than one (i.e., S ∝ M(t)(α < 1.0)) such that increases in M(t) yield diminishing returns with respect to increases in S across most species. Here, we show analytically why this phenomenon occurs and present equations that predict trends observed in the numerical values of scaling exponents for the S vs. M(t) relationships observed across dicot tree species and two aquatic vascular plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call