Abstract
To fit the individual biochemical recurrence-free survival (bRFS) data from patients treated with postprostatectomy radiation therapy (RT) with a comprehensive tumor control probability (TCP) model. Considering pre-RT prostate-specific antigen (PSA) as a surrogate of the number of clonogens, bRFS may be expressed as a function of dose-per-fraction-dependent radiosensitivity (αeff), the number of clonogens for pre-RT PSA=1ng/mL (C), and the fraction of patients who relapse because of clonogens outside the treated volume (K), assumed to depend (linearly or exponentially) on pre-RT PSA and Gleason score (GS). Data from 894 node-negative, ≥pT2, pN0 hormone-naive patients treated with adjuvant (n=331) or salvage (n=563) intent were available: 5-year bRFS data were fitted grouping patients according to GS (<7:392,=7:383, >7:119). The median follow-up time, pre-RT PSA, and dose were 72months, 0.25ng/mL, and 66.6Gy (range 59.4-77.4Gy), respectively. The best-fit values were 0.23 to 0.26Gy(-1) and 10(7) for αeff and C for the model considering a linear dependence between K and PSA. Calibration plots showed good agreement between expected and observed incidences (slope: 0.90-0.93) and moderately high discriminative power (area under the curve [AUC]: 0.68-0.69). Cross-validation showed satisfactory results (average AUCs in the training/validation groups: 0.66-0.70). The resulting dose-effect curves strongly depend on pre-RT PSA and GS. bRFS rapidly decreases with PSA: the maximum obtainable bRFS (defined as 95% of the maximum) declined by about 2.7% and 4.5% for each increment of 0.1ng/mL for GS <7 and≥7, respectively. Individual data were fitted by a TCP model, and the resulting best-fit parameters were radiobiologically consistent. The model suggests that relapses frequently result from clonogens outside the irradiated volume, supporting the choice of lymph-node irradiation, systemic therapy, or both for specific subgroups (GS <7: PSA >0.8-1.0ng/mL; GS ≥7: PSA >0.3ng/mL). Early RT should be preferred over delayed RT; the detrimental effect of PSA increase can never be fully compensated by increasing the dose, especially for patients with GS ≥7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology*Biology*Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.