Abstract
Singles tennis is one of the most popular individual sports in the world. Many researchers have embarked on a wide range of approaches to model a tennis match, using probabilistic modeling, or applying machine learning models to predict the outcome of matches. In this paper, we propose a novel approach based on network analysis to infer a surface-specific and time-varying score for professional tennis players and use it in addition to players’ statistics of previous matches to represent tennis match data. Using the resulting features, we apply advanced machine learning paradigms such as Multi-Output Regression and Learning Using Privileged Information, and compare the results with standard machine learning approaches. The models are trained and tested on more than 83,000 men’s singles tennis matches between the years 1991 and 2020. Evaluating the results shows the proposed methods provide more accurate predictions of tennis match outcome than classical approaches and outperform the existing methods in the literature and the current state-of-the-art models in tennis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.