Abstract

BackgroundCell proliferation, differentiation, Gene expression, metabolism, immunization and signal transduction require the participation of ligands and targets. It is a great challenge to identify rules governing molecular recognition between chemical topological substructures of ligands and the binding sites of the targets.MethodsWe suppose that the ligand-target interactions are determined by ligand substructures as well as the physical-chemical properties of the binding sites. Therefore, we propose a fragment interaction model (FIM) to describe the interactions between ligands and targets, with the purpose of facilitating the chemical interpretation of ligand-target binding. First we extract target-ligand complexes from sc-PDB database, based on which, we get the target binding sites and the ligands. Then we represent each binding site as a fragment vector based on a target fragment dictionary that is composed of 199 clusters (denoted as fragements in this work) obtained by clustering 4200 trimers according to their physical-chemical properties. And then, we represent each ligand as a substructure vector based on a dictionary containing 747 substructures. Finally, we build the FIM by generating the interaction matrix M (representing the fragment interaction network), and the FIM can later be used for predicting unknown ligand-target interactions as well as providing the binding details of the interactions.ResultsThe five-fold cross validation results show that the proposed model can get higher AUC score (92%) than three prevalence algorithms CS-PD (80%), BLM-NII (85%) and RF (85%), demonstrating the remarkable predictive ability of FIM. We also show that the ligand binding sites (local information) overweight the sequence similarities (global information) in ligand-target binding, and introducing too much global information would be harmful to the predictive ability. Moreover, The derived fragment interaction network can provide the chemical insights on the interactions.ConclusionsThe target and ligand bindings are local events, and the local information dominate the binding ability. Though integrating of the global information can promote the predictive ability, the role is very limited. The fragment interaction network is helpful for understanding the mechanism of the ligand-target interaction.

Highlights

  • Cell proliferation, differentiation, Gene expression, metabolism, immunization and signal transduction require the participation of ligands and targets

  • We can map the coefficients of comparative molecular field analysis (CoMFA) back into 3D space to obtain a 3]. Three-dimensional quantitative structure-activity relationship (3D-QSAR) model, which could guide the optimization of lead compounds [7]

  • Sparse canonical correspondence analysis (SCCA) algorithm was applied to recognize the physical-chemical factors between the domains and substructures

Read more

Summary

Introduction

Differentiation, Gene expression, metabolism, immunization and signal transduction require the participation of ligands and targets. Molecular docking is a target-based approach [4,5], which predicts the preferred orientation by conformation searching and energy minimization. Docking could provide excellent conformation, but it is difficult to find a rank/evaluation function to select which orientation is more appropriate [6]. Another targetbased method is comparing target similarities, which compares the targets of a given ligand by sequences, EC number, domains, 3D structures, etc. CoMFA first aligns the ligands capable of binding to a given target, and measure field intensities around the aligned ligands by different atom probes (force field-based). We can map the coefficients of CoMFA back into 3D space to obtain a 3D-QSAR model, which could guide the optimization of lead compounds [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.