Abstract

Direct electrical communication between central nervous system (CNS) neurons including those in the hippocampus is well-established. This form of communication is mediated by gap junctions and it is known that this coupling is important for brain rhythms such as gamma (20–80 Hz) which occur during active behavioural states. It is also known that gap junctions are present at several locations along the dendrites of hippocampal interneurons including parvalbumin-positive basket cell types. Weakly coupled oscillator theory, which uses phase response curves (PRCs), has been used to understand and predict the dynamics of electrically coupled networks. Here we use compartmental models of hippocampal basket cells with different levels of basal and apical spike attenuation together with the theory to show that network output can be broken down into three groupings: synchronous, asynchronous and antiphase-like patterns. Moreover, quantified PRCs can be used as a rule of thumb to determine the occurrence of a particular grouping under weak coupling conditions, which in turn implies that spike delays are critical factors in determining network output. In moving beyond weak coupling to encompass the full physiological regime of coupling strengths with network simulations, we note that it is important to be able to differentiate between these different groupings as it affects how the network responds with modulation. Specifically, an asynchronous grouping provides more dynamic richness as a larger range of phase-locked states can be expressed with strength changes. From a functional viewpoint it may be that modulation of electrically coupled networks are key to controlling cell assemblies that contribute to information coding brain substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call